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~ Spin Stability of Undamped Flexible Structures Rotating
About the Minor Axis

Clark R. Dohrmann*
Sandia National Laboratories, Albuquerque, New Mexico 87185

and
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Ohio State University, Columbus, Ohio 43210

A method is presented for determining the nonlinear stability of undamped flexible structures spinning about
the axis of minimum moment of inertia. Equations of motion are developed for structures that ave free of
applied forces and moments. The development makes use of a floating reference frame which follows the overall
rigid body motion. Within this frame, elastic deformations are assumed to be given functions of n generalized
coordinates. A transformation of variables is devised which shows the equivalence of the equations of motion
to a Hamiltonian system with n +1 degrees of freedom. Using this equivalence, stability criteria are developed
based on the normal form of the Hamiltonian. It is shown that a motion which is spin stable in the linear
approximation may be unstable when nonlinear terms are included. A stability analysis of a simple flexible
structure is provided to demonstrate the application of the stability criteria. Results from numerical integration
of the equations of motion are shown to be consistent with the predictions of the stability analysis.

Introduction

CLASSICAL result of dynamics states that the rota-

tional motion of a rigid body is stable for spin about
either the axis of minimum (minor) or maximum (major)
moment of inertia when applied moments are absent. Such a
general statement cannot be made for flexible bodies. Here,
stability depends on a number of additional factors including
the spin rate, geometry, and stiffness of the body.

A great deal of interest in the spin stability of flexible
structures was motivated by the unexpected performance of
the Explorer I satellite. Initially spun up about its minor axis,
radio signals later indicated that the satellite was in a tumbling
motion after only one complete orbit. Bracewell and Garriott!
are attributed with providing a simple physical explanation for
the observed motion based on energy considerations.

A solid mathematical basis for the stability analysis of rotat-
ing bodies was provided by the work of Pringle.? Using the
direct method of Lyapunov, basic theorems were established
on the stability of damped mechanical systems with connected
moving parts. Among these was the so-called maximum axis
rule which states that for completely damped systems a motion
of simple spin can only be stable about the major axis. Other
examples of the application of Lyapunov’s direct method
include, among others, Hughes and Fung,® Meirovitch,* and
Teixeira-Filho and Kane.> More recently, Krishnaprasad and
Marsden® and Simo et al.” applied related techniques to the
stability analysis of continuous beam models.

Use of Lyapunov’s direct method for proving spin stability
about the major axis typically involves construction of a Lya-
punov function from the angular momentum integrals (con-
stants of motion). and the total energy. Such an approach
cannot be used to show stability for spin about the minor axis,
even for undamped structures. At least one more integral of
motion is required in order to construct a Lyapunov function.
It turns out, however, that integrals in addition to those of
energy and momentum are exceptional.
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To the best of the authors’ knowledge, the nonlinear (Lya-
punov) stability of rotating flexible structures has only been
proven for cases of spin about the major axis. The contribu-
tion of the present work is toward the development of a means
to assess the nonlinear stability of undamped flexible struc-
tures spinning about the minor axis. Results are applicable to
discrete models of elastic bodies that are free from applied
forces and moments. Dual spin satellites and multibody con-
figurations are not considered. This work was originally moti-
vated by a need to predict the attitude stability of a lightweight
re-entry vehicle decoy.

Equations of motion derived in the first section from funda-
mental principles of dynamics are subsequently reformulated
as a Hamiltonian system using a transformation of variables.
Stability criteria are developed specifically for motions that
are stable in the linear approximation. A stability analysis is
made of the motion of a simple flexible structure spinning
about its minor axis. Simulations of the equations of motion
are presented as a confirmation of the stability analysis.

Equations of Motion

A system of interconnected particles each of mass m’ (i =1,
. .., N)is depicted in Fig. 1. Also shown in the figure are a
floating reference frame B and an inertial frame 4. Orthogo-
nal, dextral sets of unit vectors b,, b, bz and a,, a,, a; are fixed
in B and A, respectively. The angular velocity vector of B in
A is denoted by w. The position vector from the origin O of B
to the ith particle when the system is undeformed is denoted
by ri. The displacement vector u’ of the ith particle from its
undeformed position is assumed to be a function of dimen-
sionless generalized coordinates gy, . . . , gy.

The origin of B is chosen as the mass center of the system.
Consequently, O remains fixed in an inertial frame since the
system is assumed to be free of applied forces. The orientation
of B in A depends on the particular choice of the floating
frame.® Regardless of this choice, the intention is for B to
follow the nominal rigid body motion of the system. In addi-
tion, the unit vectors b,, b,, and b; are assumed to be parallel
to the central principal axes of the system for motions of
simple spin about a principal axis.

Three notational conventions are adopted herein for conve-
nience. The first is the placement of numbers above the equal-
ity sign in an equation. For example, the notation y:? mx + &
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Fig. 1 Sketch of the system of particles and reference frames.

indicates that the result is obtained with reference to Eqs. (1)
and (2). The second convention concerns the notation used for
the measure numbers of a vector. For any vector v, one has
vi=v - b for k= 1, 2, 3. Finally, Einstein’s summation
convention is employed where convenient. With this conven-
tion, the repeated appearance of an index implies summation
over all of the possible values of the index.
To begin, the system kinetic energy T is defined as
1 N
T==Y mviy 1)
25
where v’ denotes the velocity of the /th particle in 4. Using a
basic kinematical relationship, one obtains

1
vi= [a_uk G + amon(ry, + urin):l by 2
dg;

where €4, is the permutation symbol and (*) denotes time
differentiation.

Under the assumption that the system is free of applied
moments, the Lagrangian equations for quasicoordinates as-
sociated with w,, w,, w; are’

d <iT_> _o T, T @)
ar \ow) ~ 3wy “? 9w
d [aT oT oT
Z (=) = g —— — 9 — 4
d¢ <3wz> @1 dws @ duwy @
d /ar T oT
- =) = - dinlll 5
dar <3w3> “2 30 ! By ©)

Equations (3-5) are analogous to Euler’s equations for a rigid
body and can be derived alternatively from the angular mo-
mentum principle. Indeed, if the angular momentum vector of
the system about O is denoted by &, one can show from Egs.
(1) and (2) that

oT

By = ——

k=1,2,3) ©)
3wk

Furthermore, it follows directly from Egs. (3-6) that the mag-

nitude of the angular momentum vector % defined as
h =~hi+ hi+ h} )

is constant. Equation (7) is used later to reduce the number of
equations of motion by one.

The remaining equations of motion for the undamped sys-
tem are given by the Lagrangian equations

d <6T> oT U .
(AN L Y o, m ®)
dt \dq;/ 9dq; dq;

where U denotes the strain energy of the system. The strain
energy is a function solely of gy, . .., g,

Additional kinematic variables must be introduced if the
orientation of B in A is required. Several possibilities exist
including Euler angles, direction cosines, Euler parameters,
and Rodrigues parameters. For the purposes of this paper, the
introduction of such variables is not necessary.

It is clear from examination of Eqs. (1) and (2) that the
kinetic energy can be expressed equivalently in matrix notation
as

T="Ywwmws§r...¢ 1Moo w3dqr... Qn]T )]
where the matrix M is symmetric, positive definite, and a
function of ¢y,. . ., g,.

Upon differentiation of Eq. (9) with respect to w;, w;, w3
and ¢y, ..., ¢, and using Eq. (6), one obtains

b hspr.. . pal" =Mlws w03 @1 - . . @n)7 (10)

where momenta variables py, . . ., p, are defined as

pj=——.— (j=la-'-an) (11)

Premultiplication of Eq. (10) by M ! yields

[y wsgy...gl" =M= hysp...p )" (12)
or, equivalently,

wp =mgth + mZl, aps k=1,2,3) 13)
4= j_+13,1hl + mj:13,s+3ps (G=1,...,n) (14)
It is desirable to express the equations of motion entirely in

terms of the generalized coordinates and momenta variables.
To this end, let

T=%hhhp...p, M '[hhahspy...pd7  (15)

Differentiation of Eq. (15) with respect to g; and p; yields

af 1 M-}
—=chhp...p——hhhp...p)"
1 oM . .
W~ wws§r... go) T 01w @3 §y. .. gnl”
2 dg;
d aU
@91 . =, I j=1,...,n 16
= dtp] 3g; v ) (16
and -
aT d
9 ay & . i=1,...,n 17
= a? U . “

Equations (16) and (17) can be expressed alternatively as

d oE
—q; =— i=1,..., 18
wy o, ( n) (18)
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Sp=-Z =1 ) (19)
dtpj_ aqj J=1L...,n
where R
E=T+U (20)

The motion whose stability is of interest is one of simple
spin in which gy, . . . , g, remain equal to zero and the angular
momentum vector and b; are in the same direction. As the case
may be, it is useful to solve Eq. (7) for A, to obtain

hy=~h?— h}— h} @D

Use of the positive square root in Eq. (21) is valid as long as
h? + h? remains less than A2, This requirement is satisfied for
motions which remain close to a simple spin about the first
principal axis.

Substitution of Eqs. (15) and (21) into Eq. (20) and subse-
quent differentiation with respect to A, yields

oE 1
EY A [— ha(mg ' b+ my o 3Dm) + B(mg '+ my) 3pm)
M

(w2 — wih2)

a3
= 7,

1d
ol d, 2
= a (22)

or, equivalently,

d oFE
—hy=vh?—h} - h} — 2
s 3 — h3 o, (23)
Similarly,
d dE
—hy= —~h2—hi—h}— 24
dr 277 ah, 4

At this point in the development, it is convenient to express
the equations of motion in a dimensionless form. To this end,
we define the spin rate { as

Q=h/I 25)

where I denotes the (1,1) element of the matrix M forqy, . . .,
¢, all equal to zero. In other words, 7 is simply the moment of
inertia about the first principal axis of the undeformed system.

Defining 7=Q¢t, G =E/(hQ), my = h/h, X; =q;, and
y; = p;j/h, the equations of motion assume the dimensionless
form

%xj as) %}% G=1,...,n) (26)
d%yf a9 _%j_ G=1,...,n) @7
%,m @ 1_m22_m32—§% (28)
Lm e NTmmm @

Notice that Egs. (26-29) would form a Hamiltonian system
with n + 1 degrees of freedom were it not for the presence of
V1 — m} — m# in Egs. (28) and (29). Transformation of these
equations to an equivalent Hamiltonian system is the topic of
the following section.

Transformation to Canonical Form

New variables x, and y, are introduced as functions of m,
and m;. Letting H denote the function G expressed in terms of
the new variables, one has

H(XOa-"rxn’yO’--"yn)
=G(m2’ m3’x1’---axn)y1y-~-3yn) (30)

Application of the chain rule for differentiation to Eq. (30)
yields

d 3H
—x; @ — i=1,...,n 31
o= %, @ ) (€2))
d aH
—y, @ - — i=1,..., 32
Y= ox; ( n) (32)

ixo (28-29) m [?ﬁ‘l%_éﬁ%] ail

dr oms dm, Amy dmy | Ay
(33)
i)’o (28;29)—~/1—m22—m32 %@._%Q‘l oH
dr - 6m3 amz 6m2 6m3 aXO
(34)
Equations (31-34) are equivalent to the Hamiltonian system
d oH
—Xj=—— j=0,...,n 35
e o U ) (33)
d oH
—yj=- j=0,...,n 36
R ox, G ) (36)
provided that
B By o By 1 37

N1 —mj - m}

To obtain a solution to the partial differential equation given
by Eq. (37), consider the transformation of variables

om; dm, B am, dnm,

Xo = mac(m? + m}) (38)

Yo = myc(m3 + m3) (39)
and its inverse

my = yod (X3 + ¥5) (40)

ms = xod (X3 + ¥3) 41)

where ¢ and d are functions of the specified arguments. Substi-
tution of Eqgs. (38) and (39) into Eq. (37) yields the nonlinear
ordinary differential equation

2sc(s)e ' () + [P =1/N1—s 42)

where
s =mi+ m} (43)

A solution to Eq. (42), obtained using the software package
Mathematica, !© is

2(1 —=V1-s)
o) = (44)

It can be verified that Eq. (44) is the solution to Eq. (42) for
the initial condition c¢(0) = 1. Thus, in the linear approxima-
tion, Xg = m; and Yo = m.

Substitution of Eqs. (38) and (39) and (43) and (44) into
Eqs. (40) and (41) yields

2, 2
Xt

dxt+yhH=J1 2

45)

The procedure for transforming the original equations of
motion to an equivalent Hamiltonian system is summarized as
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follows. It is assumed that expressions for the kinetic and
strain energies of the system are available from a mathemati-
cal model of the structure.

1) Construct the matrix M using the expression for the
kinetic energy along with Eq. (9).

2) Construct the function G, given by

G=Y{Nl—mi—mimymsyy ...y,|(M/])~"
XIW1=mZ—mZmymsy, ...y} + U/ (46)

3) Construct the Hamiltonian H by substituting Egs. (40)
and (41) for m, and m; into Eq. (46). This procedure is applied
to an example problem later in the paper.

The net result of the transformation is to permit the expres-
sion of the original equations of motion as a Hamiltonian
system with n + 1 degrees of freedom. Such a result for a rigid
body (7 = 0) has been attributed to Andoyer (see Ref. 11). The
present transformation differs fundamentally from Andoyer’s
by never requiring the introduction of Euler angles.

Stability Analysis
Recall that the motion of interest is one of simple spin about
an axis parallel to the unit vector b;. Accordingly, one possible
measure of the departure from simple spin is the angle ¢
between b, and the angular momentum vector. Using a prop-
erty of the vector cross product, one obtains

Isin ¢ | I, x B)I/1A

= mZ+m?

@O Nxg + 5 d(xg + ) @7

It is evident from Eq. (47) that small magnitudes of x; and y,
imply small departures from simple spin as measured by the
angle ¢. Likewise, small magnitudes of x;, . . . , x,, imply small
elastic deformations. Thus, one reasonable definition of sta-
bility is that the null solution

xi(1)=0 0=s7<0o, Jj=0,...,n “48)

yi()=0 0=s7<0, j=0,...,n 49
to Egs. (35) and (36) is stable in the sense of Lyapunov. A
simple spin may be accompanied by constant elastic deforma-
tions caused by centrifugal loading. Nevertheless, x,. . ., X,
can be defined in such a manner that they are all zero for the
simple spin of interest.

The equations of motion for a rotating flexible structure
given by Egs. (35) and (36) are inherently nonlinear. Nonlin-
earities arise because of the presence of cubic and higher order
terms in the expansion of the Hamiltonian. Such is the case
even for the simple problem of rigid body motion.

Determination of stability for nonlinear Hamiltonian sys-
tems may or may not be a simple matter. In many instances,
the stability of an equilibrium can be determined from a linear
analysis of the nonlinear differential equations.

If the general solution to the linear equations involves a
term with exponential growth, then the equilibrium is un-
stable. This result holds for the nonlinear differential equa-
tions as well. If the general solution to the linear equations
does not contain any terms with exponential growth, then no
conclusions can be made regarding stability for the nonlinear
system. That is, an equilibrium stable in the linear approxima-
tion may not be stable when nonlinear terms in Hamilton’s
equations are included.

Before proceeding further, certain aspects of Hamiltonian
systems pertinent to later discussions are reviewed. Assuming
that (x, y)=(0, 0) is an equilibrium point and H can be

expanded as a Taylor series, one has
H(x, y) = Hy+ Hy(x, y) + Hs(x, )+ - - - (50)

where H,(x, y) is a homogeneous polynomial of degree s in the
canonical variables (x, ¥) = (Xgs - - - » Xns Yoo - - - » Yn). It is
possible through the use of canonical transformations to put a
Hamiltonian into its so-called normal form.!!2 Assuming
stability in the linear approximation, a Hamiltonian normal-
ized to degree k satisfies the properties

n

Q.
mmm=2§@+m (51
j=0

and

[I'Ij, HZ](x,y)=0 (j=3, 4,...,k) (52)

where {,] denotes the Poisson bracket of the indicated func-
tions. The characteristic frequencies Qo, . . . , 2, appearing in

Eq. (51) are said to satisfy a resonance relation of order / >0
if there exist integers ko, . . . , k, such that

k090+ e +ann :0 (53)
lkol +-- -+ lk,1 =1 (54)

Consider now a Hamiltonian system with r independent reso-
nance relations of the form

KQ=0 (55
where
ko kn e Kin
K=|: : T : (56)
krO krl LI krn
Q=02 @ --- Q1 57

According to the theory of the normal form, formal integrals
of the normalized Hamiltonian are given by

n

E Cj1 (xj2 + yjz)

=l (¢=1,...,n+1-r)
22

(58)

Il(x: y)

where the columns of the matrix C span the null space of X.
That is,

Y kjoy=0 for s=1,...,r
i=0
and

I=1,...,n+1—-r 59

For the remainder of this discussion, it is assumed that the null
solution to Egs. (35) and (36) is stable in the linear approxima-
tion and that the Hamiltonian is normalized to at least degree
four. Accordingly, one has

n

Q.
Ho p)= L 5 05 +y]) + Hy0o ») + Hilxo, p)+ - - -
=0 (60)

The Hamiltonian itself is a Lyapunov function when all of
the characteristic frequencies in Eq. (60) are of the same sign.
This result follows from the sign definiteness of the quadratic
part of the Hamiltonian and the constancy of H(x, y) along
trajectories of Egs. (35) and (36).
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Although there are exceptions, the characteristic frequen-
cies are often all positive for spin about the major axis. Conse-
quently, H(x, y) is a Lyapunov function and stability follows
directly. It is readily apparent that cubic and higher degree
terms in the Hamiltonian have no effect on Lyapunov stability
in these cases. An equivalent statement is that stability is
determined solely from consideration of the linearized equa-
tions.

The situation is considerably different for spin about the
minor axis. In such cases, the characteristic frequencies can
never all be of the same sign. Consequently, the Hamiltonian
is no longer a Lyapunov function and cannot be used to prove
stability. It still may be possible to prove stability using Lya-
punov’s direct method if an integral of motion in addition to
the Hamiltonian exists. The existence of additional integrals,
however, is exceptional.

The quest for a general method of proving the stability of
Hamiltonian systems remains open. Indeed, even relatively
simple systems such as the three body problem have defied
complete analysis. Elements of two theories having applica-
tion to the stability analysis of spin about the minor axis are
described next.

A significant advancement in the understanding of Hamil-
tonian systems was provided by the development of KAM
theory.'"!* Named in recognition of the collective work of
Kolmogorov, Arnold, and Moser, KAM theory has important
applications to the study of stability.

Most Hamiltonian systems are nonintegrable. That is, the
number of degrees of freedom exceeds the number of integrals
(conserved quantities). Notable exceptions include linear sys-
tems and systems with only a single degree of freedom.

Under certain conditions, KAM theory can be used to show
that the trajectories of nonintegrable systems often behave as
if the systems were integrable. Near a stable equilibrium (in
the linear approximation), a large fraction of the phase space
is filled by so-called KAM surfaces. Trajectories lying on these
surfaces are associated with the regular motion of an inte-
grable system. Such trajectories are stable, remaining within a
given neighborhood of the equilibrium for all times.

The fact that the phase space is not entirely filled by KAM
surfaces precludes the possibility of inferring Lyapunov stabil-
ity from KAM theory. An exception is for isoenergetically
nondegenerate two-degree-of-freedom systems. Here, trajec-
tories not lying on a KAM surface are constrained forever
between adjacent surfaces. For systems with more than two
degrees of freedom, a slow drift from the equilibrium known
as Arnold diffusion is possible. Nevertheless, from the view-
point of measure theory, stability can be shown for most
initial conditions. This type of stability is commonly referred
to as metric stability.!!

If there are no resonance relations of order four or less, then
Eq. (60) can be expressed as

n 1 n n

H(p,0)= Y Qp, +E ) Bijpio; + O(1p1%2)  (61)
j=0 i=0/j=0

where 8;; =8, lpl =po+ - - - +p,, and the action-angle

variables (p, 0) are related to the original variables (x, y) by

the canonical transformation

xj=\/2pjsin0,- j=0,---)n (62)
yj.:\/zpjcosej j=0’~-"n (63)

A system is said to be nondegenerate if

Boo Bor -+ Bow
det Bf)l 6:11 * . ° 6:171 = 0 (64)
BOn 61n e Bnn

and isoenergetically nondegenerate if

Boo Boy -+ Bow Do
Boo Bu -+ B
det | : : : S #0 (65)
6071 Bln st 6nn Qn
Q 9 Q, 0

KAM theory can be applied if a system is either nondegenerate
or isoenergetically nondegenerate.

Another approach to stability analysis involves the formal
integrals introduced previously. If the formal integrals given
by Eq. (58) can be combined with the Hamiltonian to form a
positive definite function, then the equilibrium (x, y) = (0, 0)
is said to be formally stable. According to Bruno,!* no exam-
ple of Lyapunov instability has been found for formally stable
systems.

Results

In this section, a method is presented for determining the
spin stability of undamped flexible structures rotating about
the minor axis. Although the method is applicable to a broad
class of problems, there is a small subset of problems to which
it is not. This subset consists of systems that are stable in the
linear approximation but not formally stable, and have either
1) two or more resonance relations of which one or more are
order less than five or 2) no resonance relations of order less
than five and satisfying neither Eq. (64) nor Eq. (65). Investi-
gation of stability for these exceptional cases requires a more
detailed analysis than is presented here. Such an investigation
will be the topic of a future paper.

The method for determining stability is summarized as fol-
lows in a step-by-step procedure.

1) Form the Hamiltonian of the system using the procedure
given in the section Transformation to Canonical Form.

2) Perform a linear stability analysis of the null solution to
Hamilton’s equations. Linear stability is a necessary condition
for nonlinear stability.

3) Calculate the characteristic frequencies and normal form
of the Hamiltonian using existing software.!? If the integrals
given by Eq. (58) can be combined with the Hamiltonian to
form a positive definite function, then the spin is formally
stable.

4) Determine if any resonance relations of order less than
five exist among the characteristic frequencies. If so, proceed
to step 5. If not, and either Eq. (64) or Eq. (65) is satisfied,
then KAM theory implies metric stability.

S) Apply the stability criteria presented in the following
paragraphs to systems which possess a single resonance rela-
tion of order two, three, or four.

The null solutions of all systems satisfying the stability
criteria presented here are formally stable. The null solutions
of two-degree-of-freedom systems (n = 1) satisfying these
criteria are also Lyapunov stable.

One can assume, without loss of generality, that the integer
ko in Eq. (53) is positive. Furthermore, it is necessary only to
consider cases for which k, ..., k, are all greater than or
equal to zero. Otherwise, one can easily show that the system
is formally stable.

The development for a resonance relation of order two is a
simple extension of Sokolskii.?® In this case, one can consider
ko and k; equal to unity and ks, . . ., k, equal to zero. The
normal form of the Hamiltonian is given by

Hp, 6) = E Qp; + E E a;;ipiPj
= ;

Jj= i=0,=0

+ Apgpy sin 2(0y + 6; + ¥1) + BpgV pop; sin (B + 6, + ¥»)

+ CpVpopy sin (8o + 61 + ¥3) + O(1p]>?) (66)
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Let
F(¢)=a+bsin2¢+csinp+dcos ¢ 67)
where
a =ag+ ay + ap + ay (638)
b=A (69)
¢ =B cos(y, — ¥1) + C cos(¥s — ¥1) (70)
d = B sin(y, — ;) + C sin(y3 — ¥y) (71)

If F(¢) is not equal to zero for all 0 < ¢ <27, then the equi-
librium is stable. If F(¢*) =0 for some ¢* and F’(¢*) #0,
then the equilibrium is unstable.

The following results for resonance relations of third and
fourth orders are adopted from Khazin.!¢ The normal form of
the Hamiltonian is given by

E ijj + E E aijpiP;

i=0j=0

+ Ak okn cos(koflp + - - -

H(p,0) =

+ knn)
+ 0(1p1%?) (72)
The stability criteria for a third-order resonance relation are

A=0 and ¥ Y a;kk;#0 = stability
i=0j=0

A #0 = instability

The stability criteria for a fourth-order resonance relation are

141 < |E T agkik, /\/ké“’- KR = stability
i=0j=0

Al > | B ¥ a;kk; /\/koz"- - +kF = instability
i=0j=0

The stability of a system on the borderline of any of the
given criteria is determined by fifth or higher degree terms in
the expansion of its Hamiltonian.

It is important to mention that the stability results presented
here have been developed strictly for Hamiltonian systems.
In practice, however, flexible structures are actually non-
Hamiltonian because of the presence of damping. It has been
shown?’ that for the majority of cases damping leads to
unstable motion for spin about the minor axis. Nevertheless,
the results presented here are of practical value to the investi-
gation of stability for lengths of time where the energy dissi-
pated by damping is negligible. Such is the case for the prob-
lem that originally motivated this work.

Example Problem

The spin stability of the flexible structure shown in Fig. 2 is
investigated in this section for rotation about the minor axis.
The structure consists of a particle of mass m connected to a
carrier body C of mass M, by a spring with spring constant k.
The unit vectors b, b,, b3 are parallel to the central principal
axes of C. The position p of the particle relative to the mass
center of C is given by

p = - x)b (73)

where the constant / is a given characteristic length, e.g., the
dimension /if / # 0. It is assumed that x; = 0 when the spring
is undeformed. The central principal moments of inertia of C
are denoted by 7, I, and I;.

Fig. 2 Model of the flexible structure used in the example.

The kinetic energy and strain energy of the structure are
given by

T = VoL + [ + I8 — x1)*|w}

+ [l + Al — x;)2 w3 + ml2%3) (74)
and

U = Vaki%x} (75)

where

m

= 76
« M, +m (76
B=1I &)
m=m(— ) (78)

Application of the procedure for transforming the equa-
tions of motion to an equivalent Hamiltonian system yields

1 /T, > I,
G sty Z 3y (22 )2y 2
= 2{ <1 + (RI/T) f () 2

L/T ) , }
_— 1 + —=Xx 79
* (1 T OR2/T) £ () I 92 i 9
1 1,/1, < X + yo>
H 60404 ) 4 —1
=2 { <1 Ty ey )

Lo, ( /T, > < X%+ yo>
1-
AT T\ E oy foa)

ki?
+ W xlz} (80)
where
I =L + mi*g*  (k=2,3) (81)
SO) = — 2Bx; + x{ (82)

As an aside, we note that the Hamiltonian given in Eq. (80) is
integrable for I, = I;. The quadratic, cubic, and quartic terms
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in the expansion of the Hamiltonian are

1 /] I ki2 I
H, )=z 5-1)¢+5-1 )9+ xt+ z
25 ) 2[<13 >x° <12 )y O e T
mi? I\? I\?
Hix, y)=p 71“ [(i) xole + (7‘;> )’ole] 84)
1 I 1 s
Hylx, =={l1-=)xt+=(1-= )y
4%, ¥) 8< 13>X0 8< 12>)’0x1
1 L I 1m12<11>2 ﬁ112<11>
+2—=—= 22+ - 482 —| = ) — 1 |x2x2
8< 3 13>x0y0 25\ B L\ Yox
1 mi2 (L)\? mi? 11>
+>— 3] |42 ——(F) - 1|y3x} 85
21, <12> [ T <12 yixi @)

The dimensionless quantities 1,/7, and I,/T; are both less
than unity for spin about the minor axis. Accordingly, the
characteristic frequencies determined from normalization of
Hy(x, y) are given by

2 ® —JA-15L/T)1 - 1I,/Ty) (86)

kI2 T
Q, @ /W;;; @87

It turns out that of all possible order resonance relations,
the only two that can lead to instability in this example are

20+ 0, =0
Qo+2=0

This conclusion follows from the application of the stability
criteria developed in the previous section.

Table 1 Physical parameters and initial conditions used
in Figs. 3-5 and 7. Initial conditions for m; are given by
m(0) = [1-m3(0) — m}®)]".

Figure(s) L/I L/Ii L/Ii L/I B ma0) m30) x1(0) y1(0)

3,4 20 1.3 0.15 0.099 1 0.035 0 0 0.010
Sa 2.0 1.3 0.15 0.1046 1 0.035 0 0 0.010
Sb 20 1.3 0.15 0.1046 1 0.071 0 0 0.020
Ta 2.0 1.5 0.20 0.0449 1 0.045 0 0 0.015
7b 2.0 1.1 0.20 0.0252 1 0.045 0 0 0.015
2 - .
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0
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Fig. 3 Variation of x1 for the resonance relation 20+ 2;=0.
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Fig. 4 Variation of ¢ for the resonance relation 2@+ 2, =10.
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Fig. 5 Variation of ¢ for the resonance relation 2.05Q¢ + Q; =0.

Casel: 290+ Q1=0

Normalization of the Hamiltonian through degree three
shows that the constant 4 appearing in Eq. (72) is given by

BIGAZ/ 1) (kI2/ [ 9H) [ /L (/L) ]

A= - — = (88)
V2 1-5/I, 1-1/1,
According to the stability criteria for third-order resonance
relations, the simple spin is stable only if A = 0. This condi-
tion corresponds physically to either an axisymmetric body
(I; = I;) or the rest position of the particle coinciding with the
carrier body mass center (8 = 0).

Simulation results are presented in Figs. 3-5 to help illus-
trate the behavior of the structure when the resonance relation
2Q + @ = 0 is satisfied or nearly satisfied. Shown in the fig-
ures are plots of the generalized coordinate x; and the angle ¢
[see Eq. (47)] as functions of the dimensionless time variable 7.
Results were obtained from numerical integration of Egs.
(3-5) and (8) using the parameter values and initial conditions
reported in Table 1. Initial conditions were chosen so that the
energy and momentum correspond to those for a simple spin.

It is evident from Figs. 3 and 4 that satisfaction of the
resonance relation leads to instability. Notice that although
the motion is unstable, the magnitude of x; is bounded. This
result follows from the fact that the energy stored in the spring
can never exceed the total energy of the system.

Plots of the angle ¢ are shown in Fig. 5 for 2.05Q, + @, = 0.
The simulations associated with the two plots in the figure are
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identical in every respect except for the choice of the initial
conditions (see¢ Table 1).

Lyapunov stability is expected since no fourth or lower
order resonance relations are satisfied. The stable behavior
displayed in Fig. 5a is consistent with this expectation. In
contrast, the large growth of the angle ¢ in Fig. 5b is some-
what unexpected. The simple spin is indeed Lyapunov stable,
but for practical purposes the motion may be considered un-
stable.

" The observations of the previous paragraph show that a
low-order resonance relation need not be satisfied exactly for
unstable motion to occur. Such considerations are important
in practical applications, especially when the values of the
characteristic frequencies are only known approximately.

Casell: Q2+ 2 =0

Normalization of the Hamiltonian through degree four re-
sults in the following expressions for the nonzero constants
appearing in Eq. (66).

_1 <2 _ﬁ_ﬁ> _p [S(bf +03) 7b62b3] )

00 4 L I, I, 2
o <21_1:1 i ~2_3IZ§> B %] (90)
A= %)3“) + 6 —”%2 [m(;—; + b3> —b2<;—; + b2>] ©1)
where
o =(1(I—_/111k/)i25 k=23 ©)

According to the stability criteria for the Q, + @, = 0 reso-
nance relation, spin about the minor axis is stable if

|a00+a01+a10|>|A| (93)

Stability diagrams in the I,/1,, I,/I; parameter space are
shown in Fig. 6 for B%(ml%/1)) = 0.2. Boundaries of stability
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Fig. 6 Stability diagram in the I1/Ix—I1/Is parameter space for
B2AI2/1) =0.2.
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Fig. 7 Variation of for the resonance relation Q¢ + Q1 =0.

are obtained by finding the locus of points that satisfies the
equation

Iaog + ag; + a10| =141 (94)

Regions labeled as S and U are stable and unstable, respec-
tively. Points within regions labeled as N are not physically
realizable; the sum of two principal moments of inertia in
these regions does not exceed the third.

Results from two different simulations are presented in
Fig. 7 as a check of the stability diagram. Specific values of
the parameters I,/1, and I;/1; used in the simulations corre-
spond to the two marked points in Fig. 6. Values of all the
parameters and initial conditions are reported in Table 1. The
stable and unstable behaviors exhibited in the figure are con-
sistent with the stability diagram.

Conclusions

The nonlinear stability of undamped flexible structures free
of applied forces and moments is investigated for spin about
the minor axis. A procedure is developed which allows the
equations of motion to be expressed as a Hamiltonian system.
Using this equivalence, the existing theory for Hamiltonian
systems is applied to the issue of spin stability.

It is shown that a motion of simple spin which is stable in
the linear approximation may be unstable when nonlinear
terms are included. For linearly stable systems, the existence
of at least one low-order resonance relation among the charac-
teristic frequencies is typically required for instability. Stabil-
ity criteria are developed for systems satisfying a single reso-
nance relation of order four or less. These criteria are applied
to the stability analysis of an example problem and confirmed
by numerical integration of the equations of motion.
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